Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Nuclear Medicine and Molecular Imaging ; (6): 603-608, 2020.
Article in Chinese | WPRIM | ID: wpr-869205

ABSTRACT

Objective:To test the usefulness of PET-range verification (RV) method for proton radiation accuracy verification in poly (methyl methacrylate) (PMMA) phantom using off-line PET/CT scanning.Methods:Proton irradiation dose of 2 Gy and 4 Gy were delivered in PMMA phantom. Given the difference of clinical target volume (CTV), 7 subgroups with different depth (5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0 cm) were set for each dose (14 radiation plans or radiation fields). PET/CT scan was performed 10 min after irradiation of 48-221 MeV proton beam. A co-registration between CT from treatment planning system and PET/CT was performed, as well as the smoothing and normalization of PET/CT data. The region of interest (ROI) and profile lines were drawn with the Raystation PET-RV software. The predictive induced radioactivity and the measured induced radioactivity profile lines were analyzed to evaluate the Δ R50, namely, the error at the position corresponding to 50% of the maximum predictive induced radioactivity at the end of both curves. Results:The size of each ROI was 5.0 cm×5.0 cm×2.5 cm. Profile lines were evenly distributed with the interval of 3 mm, and totally 289 pairs of profile lines were drew. The 2 Gy- and 4 Gy-dose groups yielded similar mean depth errors (Δ R50 between 1 mm and -1 mm with a standard deviation <1 mm). Conclusions:The off-line PET/CT scanning of PMMA phantom reveals a good agreement between predicted and measured PET data, with error of ±1 mm. The PET-RV method can be extended to clinical cases′ verification in human body treatment with further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL